A detailed research poster titled "Text Is MASS: Modeling as Stochastic Embedding for Text-Video Retrieval" is displayed at a conference. The poster was presented at the CVPR2024 event held in Seattle, WA. The work is a collaboration between researchers from the Rochester Institute of Technology, Amazon Prime Video, and the U.S. Army Research Laboratory. Key contributors include Jiamian Wang, Guohao Sun, Pichao Wang, Dongfang Liu, Sohail Dianat, Majid Rabbani, Raghuveer Rao, and Zhiqiang Tao. The poster is organized into multiple sections including: - **Motivation**: Discussing the challenges in linking text to video data. - **Learning in Joint Space**: Explaining the integration of text and video embeddings in a common space. - **Method: T-MASS**: Detailing the Text-Video Feature Extraction and Stochastic Radius Sampling methodology. - **Experiment Results**: Presenting quantitative comparisons and performance metrics across different methods and datasets. - **Similarity-Aware Radius Modeling**: An innovative approach to enhance text-video matching precision. Results are shown on various benchmarks like MSRVTT, LSMDC, Didemo, and VATEX, with tables and graphs illustrating the significant improvements offered by their approach. The poster includes QR codes to access the paper, code, and supplementary materials. Contact information for further inquiries and related references is provided at the bottom. The event highlight indicates a significant impact of this research in the field. Text transcribed from the image: 17-21, 2024 HIS CVPR Text Is MASS: Modeling as Stochastic Embedding for Text-Video Retrieval SEATTLE, WA Jiamian Wang Guohao Sun¹ Pichao Wang² CVPR2024 Highlight Dongfang Liu Sohail Dianat¹ Majid Rabbani¹ Dev prime DEVCOM Video ARMY RESEARCH LABORATORY RIT Rochester Institute of Technology Raghuveer Rao³ Zhiqiang Tao¹ Rochester Institute of Technology 2Amazon Prime Video (The work does not relate to author's position at Amazon) 3Army Research Laboratory Paper Code Experiment Results Supplementary Method: T-MASS MSRVTT Retrieval LSMDC Retrieval Text-Video Feature Extraction Text-video Embedding Video 1 (relevant) Video 1 (relevant) Video 2 (irrelevant) Video 3 (irrelevant) Video Encoder 4(•) Feature Fusion Method CLIP-VIT-B/32 X-Pool [17] R11 R@5+ R@10t MdR↓ MnR R@11 R@51 R@10↑ MdR↓ MnR↓ 46.9 72.8 82.2 2.0 25.2 14.3 43.7 53.5 8.0 53.2 回 Motivation [f1, fz, f] Video 2 (irrelevant) fE Rd *(•) Similarity-aware Radius RE Rd DiffusionRet [26] 49.0 75.2 82.7 2.0 12.1 24.4 43.1 54.3 8.0 40.7 UATVR [13] 47.5 73.9 83.5 2.0 12.3 R₁ =443.9 ||R|₁ 497.0 R 484.9 TEFAL [21] 49.4 75.9 83.9 2.0 12.0 26.8 46.1 56.5 7.0 44.4 CLIP-VIP [57] 50.1 74.8. 84.6 1.0 25.6 45.3 54.4 8.0 Similarity WER Training: Random sample T-MASS (Ours) 50.2 75.3 85.1 1.0 11.9 28.9 48.2 57.6 6.0 43.3 Video 3 (irrelevant) S=s(f,t), i=1,..., T' Ots CLIP-VIT-B/16 X-Pool [17] 48.2 73.7 82.6 2.0 12.7 26.1 46.8 56.7 7.0 47.3 UATVR [13] 50.8 76.3 85.5 1.0. 12.4 exp() 0 V t 0 CLIP-VIP [57] 54.2 77.2 84.8 1.0 29.4 50.6 59.0 5.0 teR T-MASS (Ours) 52.7 77.1 85.6 1.0 10.5 30.3 52.2 61.3 5.0 40.1 Lightless lantern X Shocked w/o hat Before mast Sword P R Text Mass/ Table 2. Text-to-video comparisons on MSRVTT and LSMDC. Bold denotes the best. Query: "women are modeling clothes" Text Encoder Φε() ts Testing: t, t+RE,E P Choose closest Description: "a pirate man tries to lift a lantern with his sword while on a boat" Existing Embedding Proposed Embedding +0 Test point A A 0 Test mass A A ΔΟ vit embedding A Other wit pairs Similarity Joint space The text content is hard to fully describe the redundant semantics of the video. Accordingly, single text embedding may be less expressive to handle the video information in joint space. Learning in Joint Space Rather than the original t embedding t, here Introduce stochastic mbedding t, to 14 Ou 文 BL Text Ma о 0 Bochastic ed anbedding nt a text mass A Vida wedding rameterization, Ting -E₁E~ P₁ Support d endedding we identify a support text embedding tsup the direction from v to t and being placed at the text mass, which serves as a proxy to xt mass (both shifting and scaling). tsup =t+ v-t v-t R. s based on symmetric cross entropy, Le=(+-)- It is non-trivial to determine an optimal value for the radius of the text mass (i.e., R)-oversized radius improperly encompasses less relevant or irrelevant video embedding, too small text mass may lack expressiveness to bridge the video. We propose similarity-aware radius S=s(t,f),i=1,...,T', R = exp(SW), S [S₁,..., ST], During inference, we modify the inference pipeline to take advantage of the text mass. For a given text-video pair {t, v), we repeat sampling for M trials and select the optimal ts t, arg max s(t, v), i = 1,..., M, Similarity-Aware Radius Modeling (1) Using text mass (ts) can result in performance boost. (2) R is insensitive to varied implementations. (3) Linear performs best. Dynamics of radius R. T-MASS learns a precise text semantics for the relevant text-video pairs (smallest R₁ correspond to the red curve). This is typically observed correctly retrieved pairs. We provide both desired t. DiDeMo Retrieval VATEX Retrieval Method CLIP-VIT-B/32 R@11 R@5+ R@10+ MdR↓ MnR↓ R@11 R@51 R@10+ MdR↓ MnR↓ X-Pool [17] DiffusionRet [26] 44.6 73.2 82.0 2.0 15.4 60.0 90.0 95.0 1.0 3.8 46.7 74.7 82.7 2.0 14.3 - UATVR [13] 43.1 71.8 82.3 2.0 15.1 61.3 91.0 95.6 1.0 3.3 CLIP-VIP [57] 48.6 77.1 84.4 2.0 - T-MASS (Ours) 50.9 77.2 85.3 1.0 12.1 63.0 92.3 96.4 1.0 3.2 CLIP-VIT-B/16 X-Pool [17] 47.3 74.8 82.8 2.0 14.2 62.6 91.7 96.0 1.0 3.4 UATVR [13] 45.8 73.7 83.3 2.0 13.5 64.5 92.6 96.8 1.0 2.8 CLIP-VIP [57] 50.5 78.4 87.1 1.0 - = T-MASS (Ours) 53.3 80.1 87.7 1.0 9.8 65.6 93.9 97.2 1.0 2.7 Table 3. Text-to-video comparisons on DiDeMo and VATEX. Bold denotes the best. MSRVTT Retrieval DiDeMo Retrieval Radius R wio R exp(S) exp(S) exp(SW) Re11 Rest Re101 MdR MnR R11 R@5↑ R@10↑ MdRMnR Method R@1 R@5 R@10 MdR MnR Method RO1 R@5 R@10 MdR MnR 46.9 72.8 82.2 2.0 14.3 44.6 73.2 82.0 2.0 15.4 CLIP-VIT-B/32 CLIP-VIT-B/32 48.7 74.7 83.7 2.0 12.7 48.0 75.4 85.0 2.0 13.0 CLIP4Clip [39] 42.7 70.9 80.6 ClipBERT [28] 2.0 11.6 49.2 75.7 84.7 2.0 11.7 49.7 75.8 85.3 2.0 12.6 CenterCLIP [60] CLIP4Clip [39] 42.8 71.7 82.2 2.0 10.9 49.1 75.7 85.7 2.0 11.9 49.8 78.1 86.0 2.0 11.8 X-Pool [17] X-Pool [17] 44.4 73.3 84.0 2.0 9.0 T-MASS (Ours) 6.7 9.9 11.2 14.2 36.2 17.3 27.1 28.3. 38.8 25.2 32.0 149.7 36.8 21.0 85.4 20.0 48.3 12.0 82.7 54.8 TS2-Net [36] 45.3 74.1 83.7 2.0 9.2 CLIP-VIT-B/16 DiffusionRet [26] 47.7 73.8 84.5 2.0 8.8 CLIP4Clip [39] 16.0 UATVR [13] T-MASS (Ours) 46.9 73.8 83.8 2.0 8.6 X-Pool [17] 47.7 78.0 86.3 2.0 8.0 T-MASS (Ours) 38.2 48.5 12.0 54.1 20.7 42.5 53.5 9.0 47.4 26.7 51.7 63.9 5.0 30.0 CLIP-VIT-B/16 X-Pool [17] TS2-Net [36] 46.4 73.9 Table 5. Text-to-video, on Charades. 84.1 2.0 8.4 46.6 75.9 84.9 CenterCLIP [60] UATVR [13] T-MASS (Ours) 2.0 #Trials (M) 8.9 47.7 75.0 83.3 2.0 10.2 w/o sampling R@1 44.4 72.4 R@5 R@10 MdR MnR 81.9 2.0 13.1 48.1 76.3 5 85.4 2.0 46.8 74.7 84.0 8.0 2.0 12.5 50.9 10 80.2 88.0 50.0 75.2 1.0 84.1 7.4 2.0 12.3 Table 4. Video-to-text performance (MSRVTT). 20 50.2 75.3 85.1 1.0 11.9 35 Training Epochs R@1 X-Pool 40- R@5 T-MASS (Ours) R@10 50 14- 45 5 40 12 Table 6. Stochastic sampling trails. 55 R@1 50 80- X-Pool 75 R@5 90- T-MASS (Ours) R@10 85 520 520 500 500 480 480 on 460 460 440 440- Irrelevant Text-video Pair and failing examples in the supplementary. Relevant Text-video Pair Negative Text-video Pair Positive Text-video Pair 420 420- 0 1 3 0 3 Training Epochs Compare t, with t 0.5 tsup For the irrelevant pairs, Maximum: t v.S. V Maximum: t, v.S. V tv.s. v tv.s. 0.4 = L₁+alp t, enables smaller cosine 0.3 tv.s. v -tv.s. v 40 12 15 18 21 24 12 15 18 21 12 15 18 21 24 #Frames #Frames #Frames -Avgit, v. s. v):0.588 05 0.8 1.0 1.2 1.5 Alpha 05 0.8 10 12 1.5 Alpha 0.5 0.8 1.0 1.2 1.5 Alpha Avglt v. s. v):0.635 R@10 MdR MAR similarity values (left side) 0.2 82.2 0.1 2.0 14.3 3 2.0 12.3 0.0- 2.0 11.9 For the relevant pairs, -0.1- 1.0 11.9 ts enables smaller loss -0.2 bedding. values (rights side). 200 400 Query Text in MSRVTT-1K Testing Dataset 600 800 1000 15 Query Text Batch/32: MSRVTT-1K Testing Dataset 25 30 [3] Wang, J., Wu for Efficient Image Super-Resolution. In ICC Contact E-mail: jw4905@rit.edu Website: https://jiamian-wang.github.io/ [1] Wang, J., Zhang, Y., Yuan, X., Meng, Z., & Tao, Z. (2022). Modeling Mask Uncertainty in Hyperspectral Image Reconstruction. In ECCV 2022 (Oral). [2] Wang, J., Wang, H., Zhang, Y., Fu, Y., & Tao, Z. (2023). Iterative Soft